Skip to content

Chat

Looking for example notebooks?

For example notebooks, check out examples/ai/chat on our GitHub.

/// marimo-embed size: xlarge

@app.cell
def __():
    def simple_echo_model(messages, config):
        return f"You said: {messages[-1].content}"

    mo.ui.chat(
        simple_echo_model,
        prompts=["Hello", "How are you?"],
        show_configuration_controls=True
    )
    return

///

The chat UI element provides an interactive chatbot interface for conversations. It can be customized with different models, including built-in AI models from popular providers or custom functions.

marimo.ui.chat

chat(
    model: Callable[
        [List[ChatMessage], ChatModelConfig], object
    ],
    *,
    prompts: Optional[List[str]] = None,
    on_message: Optional[
        Callable[[List[ChatMessage]], None]
    ] = None,
    show_configuration_controls: bool = False,
    config: Optional[ChatModelConfigDict] = None,
    allow_attachments: Union[bool, List[str]] = False,
    max_height: Optional[int] = None
)

Bases: UIElement[Dict[str, Any], List[ChatMessage]]

A chatbot UI element for interactive conversations.

Define a chatbot by implementing a function that takes a list of ChatMessages and optionally a config object as input, and returns the chat response. The response can be any object, including text, plots, or marimo UI elements.

Examples:

Using a custom model:

def my_rag_model(messages, config):
    # Each message has a `content` attribute, as well as a `role`
    # attribute ("user", "system", "assistant");
    question = messages[-1].content
    docs = find_docs(question)
    prompt = template(question, docs, messages)
    response = query(prompt)
    if is_dataset(response):
        return dataset_to_chart(response)
    return response


chat = mo.ui.chat(my_rag_model)

Async functions and async generators are also supported:

async def my_rag_model(messages):
    return await my_async_function(messages)

async def my_rag_model(messages):
    for response in my_async_iterator(messages):
        yield response

The last value yielded by the async generator is treated as the model response. ui.chat does not yet support streaming responses to the frontend. Please file a GitHub issue if this is important to you: https://github.com/marimo-team/marimo/issues

Using a built-in model:

chat = mo.ui.chat(
    mo.ai.llm.openai(
        "gpt-4o",
        system_message="You are a helpful assistant.",
    ),
)

Using attachments:

chat = mo.ui.chat(
    mo.ai.llm.openai(
        "gpt-4o",
    ),
    allow_attachments=["image/png", "image/jpeg"],
)

ATTRIBUTE DESCRIPTION
value

The current chat history, a list of ChatMessage objects.

TYPE: List[ChatMessage]

PARAMETER DESCRIPTION
model

A callable that takes in the chat history and returns a response.

TYPE: Callable[[List[ChatMessage], ChatModelConfig], object]

prompts

Optional list of initial prompts to present to the user. Defaults to None.

TYPE: List[str] DEFAULT: None

on_message

Optional callback function to handle new messages. Defaults to None.

TYPE: Callable[[List[ChatMessage]], None] DEFAULT: None

show_configuration_controls

Whether to show the configuration controls. Defaults to False.

TYPE: bool DEFAULT: False

config

Optional configuration to override the default configuration. Keys include: - max_tokens - temperature - top_p - top_k - frequency_penalty - presence_penalty Defaults to None.

TYPE: ChatModelConfigDict DEFAULT: None

allow_attachments

Allow attachments. True for any attachments types, or pass a list of mime types. Defaults to False.

TYPE: bool | List[str] DEFAULT: False

max_height

Optional maximum height for the chat element. Defaults to None.

TYPE: int DEFAULT: None

text property

text: str

A string of HTML representing this element.

value property writable

value: T

The element's current value.

batch

batch(**elements: UIElement[JSONType, object]) -> batch

Convert an HTML object with templated text into a UI element.

This method lets you create custom UI elements that are represented by arbitrary HTML.

Example.

user_info = mo.md(
    '''
    - What's your name?: {name}
    - When were you born?: {birthday}
    '''
).batch(name=mo.ui.text(), birthday=mo.ui.date())

In this example, user_info is a UI Element whose output is markdown and whose value is a dict with keys 'name' and 'birthday' (and values equal to the values of their corresponding elements).

Args.

  • elements: the UI elements to interpolate into the HTML template.

callout

callout(
    kind: Literal[
        "neutral", "danger", "warn", "success", "info"
    ] = "neutral"
) -> Html

Create a callout containing this HTML element.

A callout wraps your HTML element in a raised box, emphasizing its importance. You can style the callout for different situations with the kind argument.

Examples.

mo.md("Hooray, you did it!").callout(kind="success")
mo.md("It's dangerous to go alone!").callout(kind="warn")

center

center() -> Html

Center an item.

Example.

mo.md("# Hello, world").center()

Returns.

An Html object.

form

form(
    label: str = "",
    *,
    bordered: bool = True,
    loading: bool = False,
    submit_button_label: str = "Submit",
    submit_button_tooltip: Optional[str] = None,
    submit_button_disabled: bool = False,
    clear_on_submit: bool = False,
    show_clear_button: bool = False,
    clear_button_label: str = "Clear",
    clear_button_tooltip: Optional[str] = None,
    validate: Optional[
        Callable[[Optional[JSONType]], Optional[str]]
    ] = None,
    on_change: Optional[
        Callable[[Optional[T]], None]
    ] = None
) -> form[S, T]

Create a submittable form out of this UIElement.

Use this method to create a form that gates the submission of a UIElements value until a submit button is clicked.

The value of the form is the value of the underlying element the last time the form was submitted.

Examples.

Convert any UIElement into a form:

prompt = mo.ui.text_area().form()

Combine with HTML.batch to create a form made out of multiple UIElements:

form = (
    mo.ui.md(
        '''
    **Enter your prompt.**

    {prompt}

    **Choose a random seed.**

    {seed}
    '''
    )
    .batch(
        prompt=mo.ui.text_area(),
        seed=mo.ui.number(),
    )
    .form()
)

Args.

  • label: A text label for the form.
  • bordered: whether the form should have a border
  • loading: whether the form should be in a loading state
  • submit_button_label: the label of the submit button
  • submit_button_tooltip: the tooltip of the submit button
  • submit_button_disabled: whether the submit button should be disabled
  • clear_on_submit: whether the form should clear its contents after submitting
  • show_clear_button: whether the form should show a clear button
  • clear_button_label: the label of the clear button
  • clear_button_tooltip: the tooltip of the clear button
  • validate: a function that takes the form's value and returns an error message if the value is invalid, or None if the value is valid

left

left() -> Html

Left-justify.

Example.

mo.md("# Hello, world").left()

Returns.

An Html object.

right

right() -> Html

Right-justify.

Example.

mo.md("# Hello, world").right()

Returns.

An Html object.

send_message

send_message(
    message: Dict[str, object],
    buffers: Optional[Sequence[bytes]],
) -> None

Send a message to the element rendered on the frontend from the backend.

style

style(
    style: Optional[dict[str, Any]] = None, **kwargs: Any
) -> Html

Wrap an object in a styled container.

Example.

mo.md("...").style({"max-height": "300px", "overflow": "auto"})
mo.md("...").style(max_height="300px", overflow="auto")

Args.

  • style: an optional dict of CSS styles, keyed by property name
  • **kwargs: CSS styles as keyword arguments

Basic Usage

Here's a simple example using a custom echo model:

import marimo as mo

def echo_model(messages, config):
    return f"Echo: {messages[-1].content}"

chat = mo.ui.chat(echo_model, prompts=["Hello", "How are you?"])
chat

Here, messages is a list of ChatMessage objects, which has role ("user", "assistant", or "system") and content (the message string) attributes; config is a ChatModelConfig object with various configuration parameters, which you are free to ignore.

Using a Built-in AI Model

You can use marimo's built-in AI models, such as OpenAI's GPT:

import marimo as mo

chat = mo.ui.chat(
    mo.ai.llm.openai(
        "gpt-4",
        system_message="You are a helpful assistant.",
    ),
    show_configuration_controls=True
)
chat

Accessing Chat History

You can access the chat history using the value attribute:

chat.value

This returns a list of ChatMessage objects, each containing role, content, and optional attachments attributes.

marimo.ai.ChatMessage dataclass

ChatMessage(
    role: Literal["user", "assistant", "system"],
    content: object,
    attachments: Optional[List[ChatAttachment]] = None,
)

A message in a chat.

attachments class-attribute instance-attribute

attachments: Optional[List[ChatAttachment]] = None

content instance-attribute

content: object

role instance-attribute

role: Literal['user', 'assistant', 'system']

Custom Model with Additional Context

Here's an example of a custom model that uses additional context:

import marimo as mo

def rag_model(messages, config):
    question = messages[-1].content
    docs = find_relevant_docs(question)
    context = "\n".join(docs)
    prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer:"
    response = query_llm(prompt, config)
    return response

mo.ui.chat(rag_model)

This example demonstrates how you can implement a Retrieval-Augmented Generation (RAG) model within the chat interface.

Templated Prompts

You can pass sample prompts to mo.ui.chat to allow users to select from a list of predefined prompts. By including a {{var}} in the prompt, you can dynamically insert values into the prompt; a form will be generated to allow users to fill in the variables.

mo.ui.chat(
    mo.ai.llm.openai("gpt-4o"),
    prompts=[
        "What is the capital of France?",
        "What is the capital of Germany?",
        "What is the capital of {{country}}?",
    ],
)

Including Attachments

You can allow users to upload attachments to their messages by passing an allow_attachments parameter to mo.ui.chat.

mo.ui.chat(
    rag_model,
    allow_attachments=["image/png", "image/jpeg"],
    # or True for any attachment type
    # allow_attachments=True,
)

Built-in Models

marimo provides several built-in AI models that you can use with the chat UI element.

OpenAI

import marimo as mo

mo.ui.chat(
    mo.ai.llm.openai(
        "gpt-4o",
        system_message="You are a helpful assistant.",
        api_key="sk-proj-...",
    ),
    show_configuration_controls=True
)

marimo.ai.llm.openai

openai(
    model: str,
    *,
    system_message: str = DEFAULT_SYSTEM_MESSAGE,
    api_key: Optional[str] = None,
    base_url: Optional[str] = None
)

Bases: ChatModel

OpenAI ChatModel

Args:

  • model: The model to use. Can be found on the OpenAI models page
  • system_message: The system message to use
  • api_key: The API key to use. If not provided, the API key will be retrieved from the OPENAI_API_KEY environment variable or the user's config.
  • base_url: The base URL to use

api_key instance-attribute

api_key = api_key

base_url instance-attribute

base_url = base_url

model instance-attribute

model = model

system_message instance-attribute

system_message = system_message

Anthropic

import marimo as mo

mo.ui.chat(
    mo.ai.llm.anthropic(
        "claude-3-5-sonnet-20240620",
        system_message="You are a helpful assistant.",
        api_key="sk-ant-...",
    ),
    show_configuration_controls=True
)

marimo.ai.llm.anthropic

anthropic(
    model: str,
    *,
    system_message: str = DEFAULT_SYSTEM_MESSAGE,
    api_key: Optional[str] = None,
    base_url: Optional[str] = None
)

Bases: ChatModel

Anthropic ChatModel

Args:

  • model: The model to use. Can be found on the Anthropic models page
  • system_message: The system message to use
  • api_key: The API key to use. If not provided, the API key will be retrieved from the ANTHROPIC_API_KEY environment variable or the user's config.
  • base_url: The base URL to use

api_key instance-attribute

api_key = api_key

base_url instance-attribute

base_url = base_url

model instance-attribute

model = model

system_message instance-attribute

system_message = system_message

Google AI

import marimo as mo

mo.ui.chat(
    mo.ai.llm.google(
        "gemini-1.5-pro-latest",
        system_message="You are a helpful assistant.",
        api_key="AI..",
    ),
    show_configuration_controls=True
)

marimo.ai.llm.google

google(
    model: str,
    *,
    system_message: str = DEFAULT_SYSTEM_MESSAGE,
    api_key: Optional[str] = None
)

Bases: ChatModel

Google AI ChatModel

Args:

  • model: The model to use. Can be found on the Gemini models page
  • system_message: The system message to use
  • api_key: The API key to use. If not provided, the API key will be retrieved from the GOOGLE_AI_API_KEY environment variable or the user's config.

api_key instance-attribute

api_key = api_key

model instance-attribute

model = model

system_message instance-attribute

system_message = system_message

Groq

import marimo as mo

mo.ui.chat(
    mo.ai.llm.groq(
        "llama-3.1-70b-versatile",
        system_message="You are a helpful assistant.",
        api_key="gsk-...",
    ),
    show_configuration_controls=True
)

marimo.ai.llm.groq

groq(
    model: str,
    *,
    system_message: str = DEFAULT_SYSTEM_MESSAGE,
    api_key: Optional[str] = None,
    base_url: Optional[str] = None
)

Bases: ChatModel

Groq ChatModel

Args:

  • model: The model to use. Can be found on the Groq models page
  • system_message: The system message to use
  • api_key: The API key to use. If not provided, the API key will be retrieved from the GROQ_API_KEY environment variable or the user's config.
  • base_url: The base URL to use

api_key instance-attribute

api_key = api_key

base_url instance-attribute

base_url = base_url

model instance-attribute

model = model

system_message instance-attribute

system_message = system_message

Types

Chatbots can be implemented with a function that receives a list of ChatMessage objects and a ChatModelConfig.

marimo.ai.ChatMessage dataclass

ChatMessage(
    role: Literal["user", "assistant", "system"],
    content: object,
    attachments: Optional[List[ChatAttachment]] = None,
)

A message in a chat.

attachments class-attribute instance-attribute

attachments: Optional[List[ChatAttachment]] = None

content instance-attribute

content: object

role instance-attribute

role: Literal['user', 'assistant', 'system']

marimo.ai.ChatModelConfig dataclass

ChatModelConfig(
    max_tokens: Optional[int] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    top_k: Optional[int] = None,
    frequency_penalty: Optional[float] = None,
    presence_penalty: Optional[float] = None,
)

frequency_penalty class-attribute instance-attribute

frequency_penalty: Optional[float] = None

max_tokens class-attribute instance-attribute

max_tokens: Optional[int] = None

presence_penalty class-attribute instance-attribute

presence_penalty: Optional[float] = None

temperature class-attribute instance-attribute

temperature: Optional[float] = None

top_k class-attribute instance-attribute

top_k: Optional[int] = None

top_p class-attribute instance-attribute

top_p: Optional[float] = None

mo.ui.chat can be instantiated with an initial configuration with a dictionary conforming to the config.

ChatMessages can also include attachments.

marimo.ai.ChatAttachment dataclass

ChatAttachment(
    url: str,
    name: str = "attachment",
    content_type: Optional[str] = None,
)

content_type class-attribute instance-attribute

content_type: Optional[str] = None

name class-attribute instance-attribute

name: str = 'attachment'

url instance-attribute

url: str

Supported Model Providers

We support any OpenAI-compatible endpoint. If you want any specific provider added explicitly (ones that don't abide by the standard OpenAI API format), you can file a feature request.

Normally, overriding the base_url parameter should work. Here are some examples:

chatbot = mo.ui.chat(
    mo.ai.llm.openai(
        model="llama3.1-8b",
        api_key="csk-...", # insert your key here
        base_url="https://api.cerebras.ai/v1/",
    ),
)
chatbot
chatbot = mo.ui.chat(
    mo.ai.llm.openai(
        model="llama-3.1-70b-versatile",
        api_key="gsk_...", # insert your key here
        base_url="https://api.groq.com/openai/v1/",
    ),
)
chatbot
chatbot = mo.ui.chat(
    mo.ai.llm.openai(
        model="grok-beta",
        api_key=key, # insert your key here
        base_url="https://api.x.ai/v1",
    ),
)
chatbot

Note

We have added examples for GROQ and Cerebras. These providers offer free API keys and are great for trying out Llama models (from Meta). You can sign up on their platforms and integrate with various AI integrations in marimo easily. For more information, refer to the AI completion documentation in marimo.